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Abstract: As a landmark in contingent claim theory, Black-Scholes model has been widely used in 
financial markets. However, these exists a difficulty that some important variables should be 
estimated when applying the model to price options. The more accurately these parameters are 
estimated, the more accurate approximate values of option prices will be. In order to seek estimates 
of these parameters, an improved particle swarm optimization algorithm is considered, in which the 
mutation operation is made on particles past optimal and global optimal positions. Then we apply 
the algorithm to obtain the approximations of volatility and risk-free rate in European option model. 
Compared with the binary particle swarm optimization algorithm with bit change mutation, our 
algorithm is better in stability and convergence speed. 

1. Introduction 
Option markets are the most popular shares of financial institution, and option pricing is 

considered the most complex mathematically in these applied areas of finance. In 1973, analytical 
expressions for European options were given by Black, Scholes and Merton. After Black-Scholes 
model was proposed, plenty of research results about applications and developments of BS model 
have emerged. Minster and Koehler [1] applied the Newton-Raphson method to analyze the 
volatility of option. Avellaneda et al. [2] studied how to price different derivative securities when 
market volatilities were uncertain. Dindar and Marwala [3] proposed an optimized networks to deal 
with option pricing better. In fact, it's impossible to gain the analytical expressions for some kinds of 
options in real world. And numerical algorithms have been developed to deal with the computational 
intractability gradually. In the past few decades, some heuristic algorithms (such as, genetic 
algorithm (GA) [4], ant colony optimization (ACO) [5], normalized particle swarm optimization [6], 
and artificial glowworm swarm optimization [7]) have been applied to price options, and these 
methods displayed more flexibility and capacity compared with Black-Scholes model. 

It's worth noting that these parameters in BS model were set to be constants in most research on 
option pricing. Actually, option price is very sensitive to the parameter's fluctuation. Meanwhile, 
these parameters such as volatility and riskless interest rate can't be observed in advance, and the 
settings of option need to be estimated based on historical data. Thus it's critical to price options that 
how to choose proper parameters by a class of numerical algorithms. Since there exist complicated 
nonlinear relations among these parameters, we consider particle swarm optimization algorithm 
(PSO) to overcome the difficulty. 

As a class of evolutionary computation methods, particle swarm optimization algorithm (PSO) 
was developed by Kennedy and Eberhart [8]. The procedure of original PSO algorithm is prone to 
code and implement, meanwhile the algorithm tends to premature. And enormous research on 
modification and application about PSO algorithm have been undertaken. For example, in order to 
enhance particle's exploit ability, He and Huang [12] used the mean value of past best positions to 
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renew particle's position in PSO algorithm, Liu et al. [13] considered particle swarm optimizer with 
constraint. Garg [14] applied a hybrid PSO-GA algorithm to solve a class of constrained 
optimization problems. Meanwhile, research subjects about applying PSO to parameter estimation of 
option have been carried out. Based on the idea of the discrete binary version of particle swarm 
algorithm [9], Lee et al. [10] made bit change mutation on the algorithm and applied it to estimate 
the volatility of European option. Then Zhao et al. [11] considered quantum-behaved PSO algorithm, 
and used it to approximate the volatility of option. 

This paper is organized as follows. Firstly, European option pricing model is introduced and the 
optimization problem about these parameters is proposed. Next, we design an improved particle 
swarm optimization algorithm, in which the mutation operation is made on particles past optimal and 
global optimal positions. Then, we use the improved algorithm to estimate these parameters of call 
option. Furthermore, we compare the improved algorithm with existed binary particle swarm 
optimization algorithms under different selections about the number of particle swarm and the 
maximal iteration. Finally, some important conclusions are given. 

2. Problem Description 
By solving their differential equation, Black and Scholes have obtained exact formulas for prices 

of European call and put options under necessary hypotheses. 
• The stock price follows geometric Brownian motion; 
• Options have to be exercised at the expiration date; 
• The interest rate is constant; 
• The stocks are traded continuously without dividends and tax; 
• The market is considered to be frictionless. 
Next we consider the European call option only. A stock is given whose price today is 0S . The 

value of a call option on this stock is denoted by V, and strike price, time to expiration, volatility of 
stock and riskless interest rate are denoted by and r respectively. And Black-Scholes model is given 
by , ,X τ σ the following formula: 
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In this formula, denotes the standard normal distribution function. 
In Black-Scholes model, the volatility and risk-free rate are usually set to be constants during the 

period of analysis. Actually, different results of these parameters are obtained when we consider 
non-overlapping data and various time series. Therefore, it's necessary to look behind the estimates, 
then concern whether these values are higher or lower than we would expect from past and current 
values, and whether options more expensive or cheaper than they could be. In order to meet the 
feature of real financial market better, these parameters are set to be not constants, but variables 
which could be estimated by experiment analysis. 

For finding better estimation of these parameters in BS model, we expect that the approximate 
price of the call option is the same as the actual option price. Thus, to measure the difference 
between estimated and actual call option value, we choose the sum of absolute deviation as the 
fitness function. Our objective is to minimize the difference. The related optimization problem is as 
follows. 
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Where 1 2( , )f x x denotes European option pricing formula, and represent the volatility 1x and 2x
risk-free rate respectively, and 0f  is considered to be the real option price. 
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3. Particle Swarm Optimization Algorithm with some improvements 
In PSO algorithm, set the dimension of search space to M dimensional, and number of particle 

swarm ton. And let the position and velocity of ith particle be 
1 2( , , , ),i i i iMX X X X=  1 2( , , , )i i i iMV V V V=  . 

The past optimal position and global optimal position of ith particle are set to be 

1 2( , , , )i i i iMP P P P=  , 1 2( , , , )g g g gMP P P P=  . 
In the process of iteration, the velocity of particle and its position will be renewed by the 

following equations: 
 

1 1 , 2 2 ,( 1) ( ) ( )( ( ) ( )) ( )( ( ) ( ))ik ik i k ik ik i k gk ikV t wV t c r t P t X t c r t P t X t+ = + − + −     (1) 
 

( 1) ( ) ( 1)ik ik ikX t X t V t+ = + +                         (2) 
 

Where 1,2, , , 1, 2, , ,i n k M w= =  is the inertia weight, 1c and 2c are cognitive and social scaling 
parameters respectively, 1 ,i kr and 2 ,i kr are uniformly distributed in the interval (0,1). 

Some improvements on PSO algorithm are considered, and the improved algorithm is denoted by 
IPSO. In the algorithm, assume 1 2 2c c= = and set was follows: 

min max min( ) ( )
1

T tw t w w w
T
−

= + −
−  

Where T and t are maximal and present iteration counts respectively, and maxw and minw are 
maximal and minimal values of inertia weight respectively. In order to exploit particle's search 
ability, replace the past best position by the mean of the past best positions. For increasing particle's 
diversity, mutation operations are made on the global and past best positions. 

The procedure flow of the improved algorithm is as follows: 
• Initialize all particles, and set iteration count to 0; Calculate the fitness value of every particle. 
• Replace the current particle's position while its fitness value is worse than the values of past 

optimal position; Meanwhile, replace particle's position with global best position. 
• Renew global optimal position and past optimal position by mutation operations 
• Renew iteration velocity and position by (1) and (2), and 1t t= + . 
• Turn to Step 2 while t is less than the maximal iteration count, unless end the process. 

4. Results and discussion 
In the experiment, we choose the binary particle swarm optimization algorithm (BPSO1), the 

binary particle swarm optimization algorithm with bit change mutation (BPSO2) and IPSO to solve 
problem (Q) respectively. These data in the experiment come from [15]. In numerical experiments, a 
30 dimensional binary code is chosen in the binary swarm optimization algorithm, and a 1 
dimensional real value code is used in our improved algorithm. Then we consider three different 
selections about the number of particle swarm and the maximal iteration count. After repeat the 
experiment thirty times, record the average of results. 

Table 1. Comparison of the Experimental Results of the Three Algorithms 

Selection n T BPSO1 BPSO2 IPSO 
S1 10 50 0.1709 0.1335 0.0040 
S2 20 50 0.0738 0.0819 0.0012 
S3 20 100 0.0392 0.0297 5.9138E-004 
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These numerical results of different algorithms are showed in Table 1. Compared with BPSO1 
and BPSO2, the improved algorithm IPSO achieves better results and performs stronger searching 
ability in three selections. In the system of the improved particle swarm algorithm, we take past 
optimal position and global optimal position of every particle into account, meanwhile apply 
mutation operation to increase particle's diversity. It's because of this, particle's exploit ability is 
enhanced. 

Table 2. Fitness comparison between BPSO2 and IPSO 

Selection Algorithm Min Max Mean Std. Dev. 
S1 BPSO2 0.0033 0.3336 0.1335 0.0091 

 IPSO 1.7617E-007 0.0212 0.0040 2.1549E-005 
S2 BPSO2 0.0024 0.2863 0.0819 0.0058 

 IPSO 1.9033E-005 0.0040 0.0012 1.3801E-006 
S3 BPSO2 0.0028 0.1103 0.0297 7.0510E-004 

 IPSO 7.4317E-006 0.0045 5.9138E-004 9.6660E-007 

Table 3. Volatility estimate values of different algorithms 

Selection BPSO1 BPSO2 IPSO 
S1 0.2036 0.2570 0.2964 
S2 0.2345 0.2503 0.3189 
S3 0.3216 0.3282 0.3567 

Table 4. Risk-free rate estimate values of different algorithms 

Selection BPSO1 BPSO2 IPSO 
S1 0.1505 0.1167 0.1103 
S2 0.1387 0.1359 0.0906 
S3 0.0714 0.0806 0.0597 

Furthermore, estimation results of volatility and risk-free rate by using different algorithms are 
demonstrated in Table III and Table IV respectively. While minimizing the difference between 
estimated and actual call option value, the estimation values of parameters by IPSO are closer to the 
real ones. Among three selections, when the number of particle is 20 and iteration count is 100, IPSO 
display stronger computing efficiency. 

5. Conclusion 
In order to obtain the numerical solutions for parameters of call option, an improved particle 

swarm optimization algorithm (IPSO) is proposed. For avoid premature, we optimize past optimal 
position and global optimal position in particle swarm system. In numerical experiments, it's easier 
for IPSO to escape local optimum and approach global optimum, and IPSO is better in stability and 
convergence speed. Compared with binary particle swarm optimization algorithms, the estimation 
values of parameters by IPSO are closer to the real ones. 
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